
Structural Coverage of LOTOS
Specifications Through Probe Insertion

Daniel Amyot and Luigi Logrippo
Telecommunication Software Engineering Research Group

School of Information Technology and Engineering, University of Ottawa
Ottawa, Ont., Canada K1N 6N5

email: damyot@csi.uottawa.ca, luigi@site.uottawa.ca

Abstract. There is a need for measuring the completeness of a validation test suite in terms of the coverage of the
specification structure. Detecting unreachable code in a specification is also a challenge that is not often
addressed. We propose an approach based on the insertion of probes for measuring the structural coverage of
LOTOS specifications. This pragmatic and semi-automated technique can help detecting incomplete test suites,
inconsistencies between a specification and its test suite, and unreachable parts of the specification. We illustrate
our insertion strategy and use of tools with three experiments on large specifications: scenario-based validation
test suites for a Group Communication Server and for GPRS Group Call, and specification self-testability using a
conformance test suite generated automatically from GSM’s Mobility Application Part specification using
TESTGEN.

Keywords. Coverage, specification, LOTOS, probes, scenarios, structure, testing, tools.

1 INTRODUCTION

Although testing is discussed most commonly in the sense of implementation testing, execut-
able specifications can also be tested in order to see whether they satisfy requirements. Some
authors call this activityvalidation, but many of the methods and concepts of implementation
testing apply. For this reason, in this paper we use these terms interchangeably.

The ultimate goal of testing is to detect errors as soon as possible, especially at the spec-
ification level. A good test is a test that highlights a fault in the specification or in the imple-
mentation. A good test suite is a test suite that covers, under some hypothesis and
assumptions, critical aspects, if not all aspects, of a specification. This work is motivated by
the problem of coverage of a formal specification by a validation test suite. More specifically,
we are interested in the achieved structural coverage of a LOTOS specification when validated
against a collection of functional test cases. Functional test cases in a validation test suite are
derived from the (informal) requirements and they aim to cover the system’s intended behav-
iour [17]. The goal is to provide hints and assistance in the detection of unreachable portions
of the specification and to measure the completeness of the test suite with respect to thesyn-
tactic structure of the specification, and not necessarily its underlying semantics. We also aim
to cast these ideas in an environment where the necessary steps for coverage measurement are
automated as much as possible. We do not discuss techniques for obtaining functional require-
ments or functional test cases; we assume that they are given. Most commonly, they are
obtained from informal specifications by a manual process. The case studies in Section 4 pro-
vide some examples of this process.

In this paper, we adapt a technique for coverage measurement based on probe insertion
to the specific context of the formal language LOTOS [12]. Several concepts related to LOTOS

testing and the tool LOLA [14] are presented in Section 2. Probes have been commonly used in
programming languages, and they have led to simple but efficient and pragmatic results in
measuring the coverage achieved by tests when applied to a program. We believe that our
approach can also be adapted to similar specification languages based on process algebra.

1.1 Four Issues

Probe insertion is a well-known white-box technique for monitoring software in order to iden-
tify portions of code that have not been yet exercised, or to collect information for perfor-
mance analysis [15]. A program is instrumented with probes (usually counters) without any
modification of its functionality. When executed, test cases trigger these probes, and counters
are incremented accordingly. Probes that have not been “visited” indicate that part of the code
is not reachable with the tests in consideration. One obvious reason may be that the test suite is
incomplete.

There are difficult issues related to probe insertion approaches:
1) The first one is concerned with thepreservation of the original behaviour. We need to

ensure that new instructions do not interfere with the intended functionalities of the
original program or specification, otherwise tests that ran successfully on the original
behaviour may not do so any longer.

2) Another issue relates to thecategory of coverage that is possible to achieve by instru-
menting a specification with probes. Because probes are implemented as counters of
some sort, it is easier to measure the coverage in terms of control flow than in terms
of data flow or in terms of faults. Other techniques are more suitable for the two last
categories of coverage criteria [6].

3) Theoptimization of the number of probes represents a third important issue. In order
to minimize the performance and behavioural impact of the instrumentation, the
number of probes has to be kept to a minimum, and the probes need to be inserted at
the most appropriate locations in the specification or in the program.

4) Finally, what we canassess from the data collected during the coverage measurement
represents another issue that needs to be addressed. Questions like “Are there test
cases that are redundant?”, “Does a high number of visits of a particular probe imply
a possible bottleneck?”, and “Why hasn’t this probe been visited by the test suite?”
are especially relevant.

These issues will be explored in our specific context in Section 3 and in Section 5.

1.2 Experiments Context

In this paper, we make the two following assumptions. Firstly, we are not interested here in
performance aspects. Probes that slow down the testing process are an inconvenience, but our
focus is mainly on functionalities, not on performance. Secondly, the primary goal is not to
derive test cases from the specification itself. We assume that the validation test suite has been
generated by other means (a priori testing), concurrently with the specification (most likely
for validation against the requirements). What we really want to do is to measure the efficiency
of the validation test suite in terms of structural coverage. If necessary, new test cases can be
added later to achieve the required coverage, perhaps at this point using the information in the
structure of the specification itself (a posteriori testing).

In this context, we have experimented the probe insertion approach with two large spec-
ifications, namely the GPRS Group Call [2][8] and a Group Communication Server (GCS) [1].
In both cases, the specification and the validation test suite were both derived from informal
requirements, indirectly through causal scenarios called Use Case Maps (UCMs) [4]. The goal
of these two projects was threefold: 1) to generate a high-level formal specification of such
system using a scenario-based synthesis approach, 2) to assess the validity of the specification
with respect to informal requirements by applying scenario-based test cases, and 3) to check
the completeness of a validation test suite by measuring its structural coverage of the specifi-
cation. This paper is mainly concerned with the third point.

A third experiment has been done with GSM’s Mobility Application Part (MAP) [7] in a
conformance testing context. To contrast with the two previous experiments, this project
aimed to check the completeness of a conformance test suite generated from the MAP specifi-
cation itself by TESTGEN [5]. This exercise allowed us to detect many inconsistencies in the
first versions of this specification, and also some unreachable code. We believe that any test
suite generated automatically from a specification should be at least applied to this same spec-
ification. The use of structural coverage in this context can help to ensure that all parts of the
specification are exercised by the test suite. Our experience shows that this is seldom the case
on a first attempt.

These three examples are developed in Section 4. We discuss results and remaining
issues in Section 5, and we draw conclusions in Section 6.

2 LOTOS-BASED VALIDATION

2.1 Three Approaches

Three of the most common approaches to the validation of a LOTOS specification against
(informal) requirements are equivalence checking, model checking, and functionality-based
testing.

Equivalence checking usually requires a formal representation of (part of) the require-
ments, seldom available in the early stages of the design process. However, this approach is
most useful when checking the conformity of one specification against another, after some
refinement or modifications.

Model checking aims to validate a specification against safety, liveness, or responsive-
ness properties derived from the requirements. These properties can be expressed, for
instance, in terms of temporal logic orµ-calculus formulas. In the LOTOS world, this technique
usually requires that the specification be expanded into a corresponding model, which is some
graph representation (labelled transition system, finite state machine, or Kripke structure) of
the specification’s semantics. On-the-fly model checking techniques, where the whole model
does not have to be generated a priori, exist as well. Since the validation is at a semantics level,
unreachable code will hardly be detectable, simply because it will not be expanded. Also, the
languages used to define properties are very flexible and powerful, yet they can be quite com-
plex; it is a difficult problem to determine whether a property really reflects the intents of
informal requirements.

Functionality-based testing is concerned with the existence (or the absence) of traces,
use cases, or scenarios1 in the specification. These scenarios reflect system functionalities,
usually in terms of operational or user-centered instances of intended system behaviour. They
can easily be transformed into black-box test cases that can be composed with the specifica-
tion for validating the latter against requirements. Test cases are often more manageable and
understandable than properties, and they relate more closely to informal requirements. How-
ever, they are usually less powerful and expressive than liveness or safety properties expressed
in temporal logic.

Among these three approaches, we favored functionality-based testing for the validation
of the GCS and the GPRS Group Call specifications (Section 4). Equivalence checking was
not possible because we aimed to produce a first high-level specification from informal
requirements. Since these requirements were expressed mostly operationally, scenarios were
easier to extract than properties, so model checking was not used at first.

1. “Scenario” will be used as a generic term that includes traces and use cases.

These approaches are obviously not mutually exclusive, but the focus of this paper will
be on testing because this is the validation technique where structural coverage through probe
insertion, a syntactic method, is really relevant and meaningful.

2.2 LOTOS-Based Testing with LOLA

In this section, we briefly review the basic concepts of the testing theory in LOTOS and how it
is used in LOLA [14][16], a tool from the Universidad Politécnica de Madrid.

LOTOS exhibits interesting static semantics features, implemented in most of its compil-
ers and interpreters. The successful compilation of a LOTOS specification ensures that several
dataflow anomalies, such as the use of an undefined or unassigned value identifier (variable),
cannot occur. Since most of these problems are automatically avoided, we shall not consider
them further in this paper.

Dynamic behaviour, however, is a totally different story. This is where testing can help.
The LOTOS testing theory has a test assumption stating that the implementation (the specifica-
tion in our case) communicates in a symmetric and synchronous way with external observers,
the test processes. There is no notion of initiative of actions, and no direction can be associated
to a communication.

 We have no intention here of describing the LOTOS testing theory in detail. Readers not
familiar with it can refer to [3], [5], and [16] for further explanations. We will however define
several concepts that are relevant to our approach.

Testing under LOLA
LOLA is a transformational and state exploration tool with application in simulation, test-

ing, and transformation. It has the particularities of accepting Full LOTOS and of being avail-
able on several platforms (including SunOS and DOS). Its testing strategy is consistent with
Testing Equivalence as defined in [11].

In the following, we assume thatSuccess is a special gate, not part of the specification
under test, that is used in the test cases to indicate a successful execution. The tool expands the
composition of the specification and a test process in order to analyze whether the executions
reach the success event or not. Threeverdicts can occur after the execution of one test case:

• Must pass: all the possible executions (calledtest runs) were successful (they
reached theSuccess event).

• May pass: some executions were successful, some unsuccessful (or inconclusive
according to a depth limit).

• Reject: all executions failed to reachSuccess (they deadlocked or were inconclusive).
In the real world, test cases must be executed more than once when there is non-deter-

minism in either the test or the implementation (under some fairness assumption). However,
LOLA avoids this problem because it determines the response of a specification to a test by a
complete state exploration of the composition [14]. For tests that do not containexit, we have
the composition on the left, whereas the composition on the right is for tests that do contain
exit:

LOLA analyzes all the test terminations for all possible evolutions (test runs). The suc-
cessful termination of a test run consists in reaching a state where the termination event (Suc-
cess) is offered. A test run does not terminate if a deadlock or internal livelock is reached.

SpecUnderTest [{EventsSpec}]
|[{EventsSpec} ∪ {EventsTest}]|
Test [{EventsTest} ∪ { Success }]

(SpecUnderTest [{EventsSpec}]
 |[{EventsSpec} ∪ {EventsTest}]|
 Test [{EventsTest} ∪ { Success }]
) >> Success ; stop

TestExpand and FreeExpand
In our approach, we mainly use three operations provided by LOLA. The most important one,
TestExpand, analyzes the response of a specification to a given test according to the composi-
tions just presented. It has parameters for limiting the depth of the expansion, for maintaining
internal events or for removing them according to equivalence rules, for specifying the
expected verdict, for generating traces for diagnostics, and for doing partial expansions
according to state space and memory usage heuristics.

FreeExpand transforms the specification into an equivalent Extended Finite State
Machine without duplicate states (similar to a LTS). It also has parameters for limiting the
depth of the expansion and for maintaining internal events or for removing them according to
equivalence rules. We had to use this operation on several occasions due to problems with
TestExpand(to be discussed in Section 4.3)

We also make use of theCommand operation, which allows for the execution of multiple
operations in a batch file, a very convenient way to validate a specification against numerous
test cases.

3 STRUCTURAL COVERAGE

The generation of test cases from scenarios (or by other means) is ana priori approach to val-
idation. Such test cases can be derived in parallel with the specification, or even before the
specification is written. We assume that thefunctional coverage is achieved, according to
selected strategies, when the validation test suite is executed successfully.

However, the quality of the validation test suite can be further enhanced by observing
the structure of the specification (branches, events, etc.). Thestructural coverage of a test suite
relates to the parts of the specification that have been visited by test cases. When this coverage
is unsatisfactory, new test cases can be addeda posteriori. New types of faults or defects can
be uncovered along the way. Under the assumption of a complete functional coverage, we use
this structural coverage as a basis for test suite completeness.

This section is concerned with LOTOS structural coverage throughprobe insertion. We
instrument a specification and then state that the structural coverage is achieved when all
probes are visited. To illustrate the general concepts related to probe insertion, Section 3.1 pre-
sents such a technique for sequential programs.

3.1 Probes in Sequential Programs

Probe insertion is a well-known white-box technique for monitoring software in order to iden-
tify portions of code that have been exercised, or to collect information for performance analy-
sis. A program is instrumented with probes (generally counters initially set to 0) without any
modification of its functionality. Test cases execute these probes along the way, and the
counters are incremented accordingly. Probes that have not been “visited” might indicate that
the test suite is incomplete or that part the code is not reachable.

For well-delimited sequential programs, Probert [15] suggests a technique for inserting
the minimal number ofstatement probes necessary to cover all branches. Table 1 illustrates
this concept with a short Pascal program (a) and an array of counters namedProbe[] . The
counters count the number of times the probe has been reached. Intuitively, (b) shows three
statement probes being inserted on the three branches of the program. In (c), we can achieve
the same result with two probes only. Using control flow information, we can deduce the num-
ber of times thatstatement3 is executed by computingProbe[1] -Probe[2] . After the
execution of the test suite, ifProbe[2] is equal toProbe[1] , then we know that the “else”
branch which includesstatement3 has not been covered.

It has been shown in [15] that the optimal number of statement probes necessary to
cover all branches in a well-delimited program is|E| - |V| + 2, where|E| and|V| are respec-
tively the number of edges and the number of vertices of the underlying extended delimited
Böhm-Jacopini flowgraph of the program.

Regarding the issues enumerated in Section 1.1, we can observe the following:
1) If the probe counters are variables that do not already exist in the program, the origi-

nal functionalities are preserved.
2) The coverage is related to the control flow of the program.
3) There exists a way to reduce the number of statement probes.
4) This technique covers all branches in a well-delimited program.

3.2 Probe Insertion in LOTOS

Similarly to probe insertion in sequential Pascal programs, we would like to use LOTOS con-
structs to instrument a specification at specific locations while preserving its general structure
and its externally observational behaviour. Although we allow the execution of test cases to be
slowed down by this instrumentation, we do not want it to affect the functionality of the speci-
fication or the results of the validation process.

Among all the LOTOS constructs, the most likely candidate for being a probe is an inter-
nal event with a unique identifier. Such event would be composed of a hidden gate name that is
not part of any original process in the specification (we name itProbe), followed by a unique
value of some new enumerated abstract data type (P_0, P_1, P_2, P_3,...).

A Simple Insertion Strategy
We define abasic behaviour expression (BBE) as being either the inactionstop, the suc-

cessful terminationexit, or a process instantiation (P[...]). In LOTOS, a behaviour expres-
sion (BE) can be one of the following1:

• A BBE (such a BE is also called asimple BBE).
• A BE prefixed by a unary operator, such as the action prefix (;), ahide , a let , or a

guard ([predicate]->).
• Two BEs composed through a binary operator, such as a choice ([]), an enable (>>),

a disable ([>), or one of the parallel composition operators (|[...]| , || , or |||).
• A BE in parentheses.

1. We consider a very common subset of LOTOS where there are no generalizedPar of Choice opera-
tors.

Table 1 Example of Probe Insertion in Pascal

a) Original Pascal code b) 3 probes inserted in the code c) Optimal number of probes (2)

statement1;
if (condition)
then

begin
 statement2

end
else

begin
 statement3

end
{end if} ;

statement1;
inc(Probe[1]);
if (condition)
then

begin
 inc(Probe[2]);
 statement2

end
else

begin
 inc(Probe[3]);
 statement3

end
{end if} ;

statement1;
inc(Probe[1]);
if (condition)
then

begin
 inc(Probe[2]);
 statement2

end
else

begin
 statement3

end
{end if} ;

We also define asequence as a BBE preceded by one or more events (separated by the
action prefix operator).

Probes allow us to easily check every event in a behaviour expression, and thus in a
whole specification. The simplest strategy consists in adding a probe after each event at the
syntactic level. For each evente and each behaviour expressionB, the expressione; B is trans-
formed intoe; Probe!P_id; B whereProbe is a hidden gate andP_id a unique identifier. A
probe that is visited guarantees, by the action prefix inference rule, that the prefixed event has
been performed. In this case, if all the probes are visited by at least one test case in the valida-
tion test suite, then we have achieved a totalevent coverage, i.e., the coverage of all the events
in the specification (modulo the value parameters associated to these events).

Table 2 illustrates this strategy on a very simple specificationS1 (a). Essentially, since
there are three occurrences of events in the behaviour, three probes, implemented as hidden
gates with unique value identifiers, are added toS1 to formS2 (b). The validation test suite is
composed of two test cases that remained unchanged during the transformation. We will dis-
cuss the third specification (c) later.

Probe insertion is a syntactic transformation that also has an impact on the underlying
model. Table 3 presents the LTSs resulting from the expansion ofS1 andS2. Although (a) and
(b) are not equal, they are observationally equivalent. Therefore, the tests that are accepted and
refused byS1 will be the same as those ofS2.

Table 2 Simple Probe Insertion in LOTOS

a) Original L OTOS specification
 (S1)

b) 3 probes inserted in the
specification (S2)

c) 2 probes inserted, using
 the improved strategy (S3)

specification S1[a,b,c] : exit
 ... (* ADTs *)

behaviour
 a; exit
 []
 b; c; stop

where
 process Test1 [a]: exit :=
 a; exit
 endproc (* Test1 *)
 process Test2 [...]: noexit :=
 b; c; Success; stop
 endproc (* Test2 *)
endspec (* S1 *)

specification S2[a,b,c] : exit
 ... (* ADTs *)

behaviour
hide Probe in

 (
a; Probe!P_1; exit

 []
 b; Probe!P_2;
 c; Probe!P_3; stop
)

where
 ... (* Test1 and Test2 *)
endspec (* S2 *)

specification S3[a,b,c] : exit
 ... (* ADTs *)

behaviour
hide Probe in

 (
a; Probe!P_1; exit

 []
 b; c; Probe!P_2; stop
)

where
 ... (* Test1 and Test2 *)
endspec (* S3 *)

Table 3 Underlying LTSs

a) Original L OTOS specification
 (S1)

b) 3 probes inserted in the
specification (S2)

c) Composition of S2 with two test
cases: Test1 and then Test2

a b

δ c

a b

i (* P_1 *) i (* P_2 *)

δ c

i (* P_3 *)

i (* P_1 *) i (* P_2 *)

i (* δ *) c

Success i (* P_3 *)

Success

a b

Table 3(c) presents two traces, resulting from the composition of each test process found
in Table 2(a) withS2, that cover the events and probes ofS2. Test1 coversP_1 in the left
branch of (c) whileTest2 coversP_2 andP_3 in the right branch. Neither of these tests cov-
ers all probes, but together they cover all three probes, and therefore the event coverage is
achieved, as expected from the validation test suite.

Going back to the four issues enumerated in Section 1.1, we make the following obser-
vations:

1) Probes are unique internal events insertedafter each event (internal or observable) of
a sequence. They do not affect the observable behaviour of the specification; this
insertion can be summarized by the LOTOS congruence rule:

e; B ≈c hide Probein e; Probe!P_id; B = e; i; B
2) The coverage is concerned with the structure of the specification, not with its data

flow nor with fault models. We have anevent coverage where we make abstraction of
the values in the events (e.g., we do not distinguishgate!0 from gate!succ(0)).

3) The total number of probes equals the number of occurrences of events in the specifi-
cation. Reducing the number of probes is the focus of the next section.

4) This strategy covers all events syntactically present in a specification, modulo their
value parameters.

Improving the Probe Insertion Strategy
The simple insertion strategy leads to interesting results, but two problems remain. First, the
number of probes required is much too high. The composition of a test case and a specification
where multiple probes were inserted (and transformed into internal events) can easily result in
a state explosion problem. Second, this approach does not cover simple BBEs as such, because
they are not prefixed by events. Simple BBEs may represent a sensible portion of the structure
of a specification that needs to be covered as well.

In a sequence of actions, the number of probes can be reduced to one probe, which is
inserted just before the ending BBE. If such a probe is visited, then by the action prefix infer-
ence rule we know that all the events that precede the probe in the sequence were performed.
The longer a sequence, the better this optimization becomes. Table 2(c) shows specificationS3
where two probes are necessary instead of three as inS2. Thissequence coverage is equivalent
to event coverage, with fewer probes (or the same number in the worst case). However, an
event coverage that uses the simple strategy might lead to better diagnostics when a sequence
is only partially covered, because we would be able to pinpoint the problematic event in the
sequence.

The use of parenthesis ine; (B), whereB is not a simple BBE, does not require a probe
either. The behaviour expressionB will most certainly contain probes itself, and a visit to any
of these probes ensures that evente is covered (again, by the prefix inference rule).

For the structural coverage of simple BBEs (without any action prefix), there are some
subtle issues that need to be explored. Suppose that* is one of the LOTOS binary operators
enumerated at the beginning of this section. If we are to prefix the BBE with a probe in the
generic patternsBBE * BE andBE * BBE , we must be careful not to introduce any new non-
determinism:

• BBE is stop : This is the inaction. No probe is required on that side of the binary
operator (*) simply because there is nothing to cover. This syntactical pattern is use-
less and should be avoided at the specification level.

• BBE is a process instantiationP[...] : A probe before the BBE can be safely used
except when* is the choice operator ([]), or when* is the disable operator ([>) with

the BBE on its right. In these cases, a probe would introduce undesirable non-deter-
minism that might cause some test cases to fail partially (may pass verdict). A solu-
tion would be to prefix the process instantiation. One way of doing so is to partially
expand processP with the expansion theorem.

• BBE is exit : The constraints and solution are the same as for the process instantia-
tion.

Assuming that the definition of processP is not a simple BBE, we can further reduce the
necessary number of probes for aBBE that isP[...] whenP is not instantiated in any other
place in the specification, except for recursion inP itself. In this case, a probe beforeP is not
necessary because probes inserted withinP will ensure that the instantiation ofP is covered.
For example, suppose a processQ that instantiatesP, whereP is not a BBE nor instantiated in
any other process thanP itself:

Q[...] := e1; e2; e3; stop [] P[...]

A probe inserted beforeP would make the choice non-deterministic. However, ifP is not
a simple BBE and if it is not instantiated anywhere else, then no probe is required beforeP in
this expression. This situation happens often in processes that act as containers for aggregating
other processes.

To complete the answers to the four issues given for the simple strategy, the improved
probe insertion strategy reduces the number of probes required for event/sequence coverage. It
also expands the structural coverage to include event coverage and BBE coverage, except in
the cases where a probe would introduce non-determinism. In these cases, some relief strate-
gies (such as prefixing or partial expansion) can be applied.

Tool Support
Though we believe that full automation of probe insertion is possible, we opted for a semi-
automated approach in our three examples because we were still experimenting with the tech-
nique and some special cases (with problematic BBEs) were not trivial to manage.

A filter was written in LEX, to translate special comments inserted in the original specifi-
cation ((*_PROBE_*)) into internal probes with unique identifiers (e.g.,Probe!P_0;). Also,
a new abstract data type (ProbeLib) was added to the specification, to enumerate all the
unique identifiers for the probes. Care was taken not to add any new line to the original speci-
fication, in order to preserve two-way traceability between the transformed specification and
the original one. This tool is called LOT2PROBE.

Since we did not have any full synchronization operator in our specifications, theProbe
gate was hidden at the topmost level of the specification (thebehaviour section), and was
added to the list of gate parameters of all process definitions and instantiations. In the case
where a full synchronization operator is used, probes have to be hidden on each side of this
operator, otherwise unexpected deadlocks might occur:

B1 || B2 becomes(hide Probe in B1) || (hide Probe in B2)

We used batch testing under LOLA (with theCommand operation) for the execution of
the validation test suite against the transformed specification. Several batch files, written in
PERL and LEX, compute probe counts for each test and give a summary of the probes visited
by the test suite, with a highlight on probes that were not covered.

3.3 Structural Coverage in the Validation Process

Our start point is composed of a specification and a validation test suite. After the successful
compilation of the specification, indicating that static semantics rules have been satisfied, the
test cases are applied to the specification (batch testing under LOLA). If unexpected results are

found, then the specification and/or the test cases have to be fixed, and the cycle re-executed.
When all test cases have resulted in the expected verdict (we say that the functional cov-

erage is achieved), probe special comments are manually inserted in the specification, accord-
ing to the improved strategy discussed in Section 3.2. A new specification is generated using
LOT2PROBE. The structural coverage can then be measured by executing the same test suite
and by collecting statistical results. If the coverage is not complete, then new test cases can be
added (often derived from simulations), or unreachable code can be removed from the specifi-
cation. This cycle can be executed iteratively each time a specification is modified.

At the end of this process, we get a specification and a validation test suite that are
highly consistent and complete. This abstract test suite can then serve for regression testing
and as a basis for implementation testing.

4 EXPERIMENTS WITH GCS, GPRS, AND MAP

We validated three complex specifications using the generic process described in Section 3.3.
We present here short descriptions of the GCS, GPRS, and MAP specifications, with the
results of the structural coverage measures.

4.1 Group Communication Server (GCS)

Overview of the Approach
A Group Communication Server (GCS) allows the multicasting of messages to members of a
group. Groups are created and destroyed dynamically as the need arises. A GCS offers the
core services required for the implementation of the server side of systems such as mailing
lists, Internet Relay Chat (IRC), videoconferences, and publish and subscribe systems. Users
are permitted to join and quit one or many groups. Messages consist in a variety of types
(voice, video, data, etc.) and are multicast to the members of the group via different communi-
cation channels, selected to suit the requirements of the group. A group may have an adminis-
trator whose tasks might include registration management and group deletion. A group may
also have a moderator whose task is to approve or reject messages sent to the group.

We developed the LOTOS specification of this system using a scenario-based approach.
Twelve scenarios, described as Use Case Maps (UCMs) [4], were extracted from the twelve
GCS functionalities drafted in the informal requirements. UCMs are a visual notation we uti-
lize for capturing the requirements of reactive systems. They describe scenarios in terms of
causal relationships betweenresponsibilities. UCMs put emphasis on the most relevant, inter-
esting, and critical functionalities of the system. They can have internal activities as well as
external ones. Usually, UCMs are abstract (generic), and could include multiple traces. With
UCM, scenarios are expressed above the level of messages exchanged between components,
hence they are not necessarily bound to a specific underlying structure. They provide a path-
centric view of system functionalities and improve the level of reusability of scenarios.

We synthesized the specification from these UCMs. Since the synthesis was done manu-
ally, validation was required to assess the coverage of the requirements. Concurrently, the
same UCMs served as the basis for the development of a sound test suite for achieving a high-
yield coverage of the system functionalities at the design level. Our test generation strategy is
very similar to the selection of test cases for white-box testing. However, instead of using the
structure of a program, we are using the causal paths of several UCMs. The UCMs being at a
level of abstraction between the requirements and the specification, the assumption is that we
try to minimize the number of test cases that we generate, while at the same time maximizing
the coverage of the informal requirements. Moreover, such test cases are more likely to be cor-
rect w.r.t. the requirements than test cases derived manually from those same informal require-

ments. We checked the completeness of this validation test suite by measuring the structural
coverage of the specification. Figure 1 illustrates the approach in a nutshell.

Figure 1 Structural Coverage of a Specification Derived from Scenarios

Coverage Results
The GCS specification contains 29 ADT definitions (560 lines) and 19 processes (850

lines). We originally generated 24 test groups (1 for acceptance test cases and 1 for rejection
test cases, for each UCM) for a total of 58 acceptance test cases (including two independent
test cases for robustness testing) and 51 rejection test cases (1600 lines). Using the improved
strategy, we needed only 54 probes in the original specification, even if there were 59
instances of events in the processes, as well as many simple BBEs.

We used LOLA’s TestExpand operation in order to achieve our functional coverage with
our validation test suite. On the original specification, batch testing allowed us to perform all
tests in less than 5 seconds (on a Pentium 150Mhz). Several problems and errors were fixed
along the way (in both the specification and in the test suite). After several iterations, all
acceptance test cases resulted in aMust pass verdict and all rejection test cases resulted in a
Reject verdict, as expected.

On the specification with probes, the tests resulted in the same verdict, so no new non-
determinism had been added. However, by usingTestExpand without removing internal
actions (e.g., the probes) in the expanded LTSs, the statistics showed that 5 of the 54 probes
inserted had not been covered by the test suite:

• Two were related to a feature that was not part of the requirements or the UCMs, but
that was specified in LOTOS anyway (a group is deleted when there is no member
left). As such, relevant test cases could not have been derived from the UCMs. We
added two test cases (obtained from a step-by-step simulation of the specification) to
cover these probes.

• One probe was not covered because we had split a UCM path into a choice between
two guarded behaviour expressions with different values. It seemed easier to imple-
ment in such a way this particular UCM path in LOTOS. However, the test case
derived from the UCM covered one alternative only. We simply added another test
case with the right value for the other alternative to be covered.

• The remaining two probes were reachable when doing a step-by-step execution of the
composition of the relevant tests and the specification. However,TestExpand had not
output the probe internal events in the resulting LTSs. This problem withTestExpand
will be further discussed in Section 4.3. No new test case was required as such
because we knew we obtained full structural coverage with our validation test suite.

Original
LOTOS Spec.

Scenarios
(UCMs)

LOTOS Spec
with Probes

LOTOS Test
Cases

LOT2PROBE

Spec with
Test Cases

LTSs with
Internal
Events

Results and
Statictics

Composition

LOLA

Statistics

Derivation

Synthesis

Informal
Requirements

Capture

(TestExpand)

Several lengthy test cases led to state explosion problems when we required not to mini-
mize internal actions in the LTSs. For these tests, we had to use the heuristic expansion option
of TestExpand instead of the default exhaustive expansion. In all the instances where we used
this option, the probe coverage was the same as for the exhaustive expansion, but there was an
important reduction (about 99%) of the size of resulting LTS and of the time required for the
expansion. This option allowed for the generation of coverage statistics in less than a minute, a
time period short enough for this technique to be used in a heavily iterative design process.

4.2 GPRS Group Call (PTM-G)

Overview
TheGeneral Packet Radio Service (GPRS) [8] is a set ofGlobal System for Mobile Communi-
cations (GSM) [7] bearer services that provides packet transfer in interworking with external
networks and within aPublic Land Mobile Network (PLMN). In this project, we focused on
GPRS’Point-To-Multipoint-Group Call (PTM-G). This service allows transmissions to spe-
cific groups of users in specific geographical areas. At any point in time, the network has the
knowledge of the number of users and their location.

Building on the experience gained from the GCS system, which is similar to PTM-G in
many aspects, we developed 10 UCMs for the functionalities of the group call service. Follow-
ing the approach already illustrated in Figure 1, we specified the subset of GPRS in LOTOS and
we generated a validation test suite, and then used our structural coverage technique.

In the GCS experiment, we specified only the server side of the application (because
possibly many types of clients can be defined). In this GPRS example, we developed both the
server side and the client side, namely theMobile Stations (MS). As a result, we had a larger
specification composed of 43 ADT definitions (1140 lines), 7 processes for the MS (300
lines), and 22 processes for the PLMN where the group call service was defined (1100 lines).
35 test cases were generated for our system (780 lines) of code. While the length of these test
cases varied between 2 and 31 events, the length of the 1933 successful execution traces (test
runs) varied between 3 and 155 events, internal events included.

Observations
We first tested the PLMN alone, and then we instantiated a typical collection of mobile sta-
tions (an administrator, two initiators, and three regular members) and tested its composition
with the PLMN. As expected, our test cases led to incorrect traces that were used to diagnose
bugs in the specification (due to the ADTs, to the guards, or to unfeasible synchronizations
between processes).

After a successfully execution of all 35 test cases (in 3 minutes on a Sparc Ultra 1), we
inserted 71 probes in the specification for the PLMN and 30 for the MS (for 129 instances of
events). We have divided the coverage measurement into two steps in order to reduce the size
of the resulting LTS and the testing time.

Since we had added features for improving the robustness of the PLMN, we expected to
have seven probes unvisited as a result of events that should not happen in the normal use of
the system. These points were obscure and ambiguous in the requirements [8], so we made
some design decisions at the specification level. The coverage of the PLMN process alone
highlighted an unvisited probe corresponding to a portion of the code that was useless. It was
removed from the specification. Similarly, we expected three probes in the MS definition not
to be reached by our test suite (they were part of additional code for robustness). Indeed, the
remaining 27 probes were covered as planned.

The validation test suite was meant to be used on the composition of the PLMN and sev-
eral MS. It could have been completed with robustness test suites for the PLMN process alone
and for the MS process alone. Since we were able to visit the robustness probes using step-by-
step execution of the corresponding processes, we had a basis for the generation of new test
cases for the PLMN and the MS processes (something we have not done in the project).

4.3 GSM Mobile Application Part

Overview
Among the several protocols that are used in GSM for components to exchange messages,
nine protocols are grouped together to form theMobile Application Part (MAP) protocol [7].
Each of them corresponds to a specific interface between two components at a specific GSM
layer. One of the most important roles of the MAP protocol is to maintain consistency between
the databases that have to be frequently modified due to the mobility of the users and the way
they change their profiles.

This project aimed to automatically generate, using TESTGEN [5], an abstract conform-
ance test suite [13] from the MAP LOTOS specification and to compare it to a similar test suite
derived from the MAP SDL specification (space limitations do not allow us to discuss the
results of this study). This context is very different from the validation context used in the
GCS and GPRS examples.

As shown in Figure 2, the specification is first translated into an automaton by CÆSAR,
and then the graph is minimized by ALDÉBARAN [9] (from 53001 states and 78909 transitions
to 121 states and 205 transitions.). TESTGEN then generates a conformance test suite by doing
a tour of the graph and by using Unique Event (UE) sequences, a unique identification of each
state adapted to LOTOS from the concept of Unique Input/Output (UIO) sequences [5].

Figure 2 Self-Verification of the Structural Coverage of the MAP Specification

The test sequence was translated into a collection of LOTOS processes. For example, the
test sequenceri@ Preamble(3) @(3,"TC_I_1 !END_OF_SERVICES",67)@ UE_1(67) leads to
the definition of a preamble process, a UE process, and a test process as such that would
instantiate the two first ones, separated by an event (the transition).

Original MAP
Specification

Conformance
Test Cases

Automaton

Minimized
Automaton

MAP Spec
with Probes

LOTOS Test
Cases

Spec with
Test Case n

LTSs with
Internal
Events

Results and
Statictics

TESTGEN

ALDÉBARAN

CÆSAR LOT2PROBE

Composition

Translation

LOLA (FreeExpand)

Statistics

The MAP specification was composed of 22 ADT definitions (370 lines), 14 processes
for the behaviour (840 lines), and 684 test cases (12220 lines). For these tests, 237 preambles
(2800 lines), 166 UE sequences (1150 lines), 107 partial UE sequences (2800 lines), helped
structuring the 684 test processes (5470 lines).

Results
Functionally, TESTGEN guarantees the coverage of all the transitions in the reduced graph gen-
erated from the specification. Indeed, 98% of the verdicts were Must pass, and 2% were May
pass (due to some non-determinism in the specification). There is one test case that we do not
consider in our results. It is always rejected because of its origin in an artificial transition
added to the automaton in order to make it strongly connected, as required by TESTGEN.

We went through three major iterations when measuring the structural coverage. In the
first one, only 31 out of 80 probes in the specification were covered by the 417 tests generated
at the time. There was a problem related to ADTs and guards that caused about half the speci-
fication not to be expanded. Once this was fixed, the number of test cases generated by
TESTGEN climbed to 604. However, they visited only 28 of the 73 probes in the specification
(for 156 instances of events). A bug in theTestExpand operation caused the expansions to be
incomplete. For instance, whenTest2 is applied to specificationS3 in Table 2(c),TestExpand
does not output probeP_2 in the resulting LTS.

We solved this problem by composing each test with the main behaviour (we used a
PERL script to do so), and then usedFreeExpand, which happens not to have the bug present in
TestExpand. After a few modifications to the specification, we eventually obtained a complete
structural coverage of the specification with 684 conformance test cases automatically gener-
ated with TESTGEN. If it had not been for the probe insertion approach, an incorrect test suite
would have been generated from the first incorrect specification. We believe that such “self-
testability” approach to conformance testing is an interesting contribution.

5 DISCUSSION

Missing Probes
We have shown instances of problems associated to probes that are not visited by a validation
or conformance test suite. They usually fall into one of the following categories:

• Incorrect specification. In particular, there could be unreachable code caused by pro-
cesses that cannot synchronize or by guards that cannot be satisfied.

• Incorrect test case. This is usually detected before probes are inserted, during the ver-
ification of the functional coverage.

• Incomplete test suite. Caused by an untested part (an event or a BBE) of the specifica-
tion (e.g., a feature of the specification that is not part of the original requirements.)

• For our scenario-based approach, there could be some discrepancy between a UCM
and the specification caused by ADTs, guards, and the choice ([]) operator.

Code inspection and step-by-step execution of the specification can help diagnosing the
source of the problem highlighted by a missing probe.

FreeExpand could be used to expand the whole specification in order to check that all
probes are in the underlying LTS. This would ensure that no part of the code is unreachable.
However, for most real-size specifications, this approach is not likely to work because of the
state explosion problem. Using on-the-fly model checking (for instance, with CÆSAR [9]), the
verification of an appropriate property, which would state that a particular probe can be even-
tually reached, seems a more practical solution.

Goal-oriented execution [10], a technique based on LOTOS’ static semantics, could be a
promising approach to the determination of the reachability of a unique probe. However, this
technique would first have to be extended in order to allow specific internal events (the probes)
to be used as goals.

Compositional Coverage of the Structure
The GPRS example, where we first checked the probes in the PLMN and then the ones in the
MS, showed that we do not have to cover all the probes at once to get meaningful results.
Since probes do not affect the observable behaviour of the specification, we can use a compo-
sitional coverage of the structure. Probes can be covered independently, and one could even do
this one probe at a time. This would reduce the size of the resulting LTSs to a minimum, and
thus help avoiding the state explosion problem.

Specification Styles
Two equivalent specifications written using different styles might lead to different coverages
for the same test suite. The way a LOTOS specification is structured usually reflects more than
its underlying LTS model. For instance, in a resource-oriented style, the structure can be inter-
preted as the architecture of the system to be implemented. In a constraint-oriented style, pro-
cesses impose local or end-to-end constraints on the system behaviour. The impact of the
specification style on the structural coverage approach is a research direction that is yet to be
explored.

Metrics
Redundant tests add cost but not rigor. If a probe is covered by one test only, then its presence
is obviously required in the test suite. However, two tests that cover exactly the same probes
might indicate some redundancy. Nevertheless, this redundancy is mainly structural, and per-
haps not functional (according to the strategy used in the test plan). Therefore, both tests might
still be required in the test suite to achieve the functional coverage. Although such metrics can
be used to provide hints about test cases that are good candidates for being removed, one has
to be cautious not to act on this sole piece of information.

The problem of using the number of visits for performance measures is outside of the
scope of our work. LOTOS specifications focus on functionalities, not on performance. The
specification style will influence the number of visits, and so will the options used inTestEx-
pand andFreeExpand. A very low number of visits for a probe might indicate the need for
more thorough testing, while a high number of visits might indicate a potential contention of
bottleneck. Again, this is a research direction that needs to be explored.

6 CONCLUSIONS

There is a need for measuring the completeness of a validation test suite in terms of the cover-
age of the specification structure. Detecting unreachable code in a specification is also a chal-
lenge that is not often addressed. We proposed an approach based on the insertion of probes
for measuring the structural coverage of the behaviour section of LOTOS specifications. This
pragmatic and semi-automated technique can help detect incomplete test suites, inconsisten-
cies between a specification and its test suite, and unreachable parts of the specification, with
respect to the requirements in consideration.

We suggested a strategy for the insertion of probes in a specification to measure the cov-
erage of all the instances of events. We improved this strategy by reducing the number of
probes required for a structural coverage that includes sequence/event coverage and basic

behaviour expressions (BBE) coverage. Concrete tool support for this approach was also
addressed.

Using a validation process that includes structural coverage, we presented the results
from three experiments on large specifications: scenario-based validation test suites for GCS
and for GPRS Group Call, and specification self-testability using a conformance test suite for
MAP generated automatically with TESTGEN. We discussed several problems related to state
explosion and probes missed during the coverage measurement. Some research issues were
also presented.

We expect the improved insertion strategy to be automatable in the future. We also
believe that the approach could be tailored to other (CCS-based or CSP-based) process alge-
bras, as long as thehide or an equivalent construct is supported.

7 ACKNOWLEDGEMENT

We kindly acknowledge FCAR, NSERC, and Motorola for their support. We are also grateful
to the LOTOS research group for their usual yet appreciated cooperation, in particular Jacques
Sincennes for contributing to the GCS specification, Pascal Forhan for developing the GPRS
Group Call specification and Hichem Ben Fredj for his MAP specification.

8 REFERENCES
[1] Amyot, D., Logrippo, L., and Buhr, R.J.A. (1997) “Spécification et conception de systèmes

communicants : une approche rigoureuse basée sur des scénarios d’usage”. In:CFIP 97, Ingénierie des
protocoles, Liège, Belgique, September 1997. http://www.csi.uottawa.ca/~damyot/cfip97/cfip97.pdf

[2] Amyot, D., Hart, N., Logrippo, L., and Forhan, P. (1998) “Formal Specification and Validation using a
Scenario-Based Approach: The GPRS Group-Call Example”. In:ObjecTime Workshop on Research in
OO Real-Time Modeling, Ottawa, Canada, January 1998.
http://www.csi.uottawa.ca/~damyot/wrroom98/wrroom98.pdf

[3] Brinksma, E. (1988) “A theory for the derivation of tests”. In: S. Aggarwal and K. Sabnani (Eds),Protocol
Specification, Testing and Verification VIII, North-Holland, 63-74, June 1988.

[4] Buhr, R.J.A. and Casselman, R.S. (1995)Use Case Maps for Object-Oriented Systems, Prentice-Hall,
USA.

[5] Cavalli, A.R., Kim, S.U., and Maigron, P. (1993) “Improving Conformance Testing for LOTOS”. In: R.L.
Tenney, P.D. Amer and M.Ü. Uyar (Eds),FORTE VI, 6th International Conference on Formal Description
Techniques, North-Holland, 367-381, October 1993.

[6] Charles, O. (1997)Application des hypothèses de test à une définition de la couverture. Ph.D. Thesis, Uni-
versité Henri Poincaré — Nancy 1, Nancy, France, October 1997.

[7] ETSI (1992), Digital Cellular Telecommunication System (Phase 2).Mobility Application Part (GSM
09.02), Version 4.0.0 (June 1992).

[8] ETSI (1996) Digital Cellular Telecommunications System (Phase 2+);General Packet Radio Service
(GPRS); Service Description Stage 1 (GEM 02.60), Version 2.0.0 (November 1996).

[9] Fernandez, J.-C., Garavel, H., Mounier, L., Rasse, A., Rodriguez, C., and Sifakis, J. (1992) “A Toolbox for
the Verification of LOTOS Programs”. In: L.A. Clarke (ed.)Proc. of the 14th International Conference on
Software Engineering ICSE’14, 1992, 246-259.

[10] Haj-Hussein, M., Logrippo, L. and Sincennes, J. (1993) “Goal Oriented Execution for LOTOS”. In: M.
Diaz and R. Groz (Eds),Formal Description Techniques, V, North-Holland, 311-327.

[11] Hennessy, M. (1988)Algebraic Theory of Processes. Foundations of Computing, MIT Press, Cambridge,
USA.

[12] ISO (1989), Information Processing Systems, Open Systems Interconnection, “LOTOS — A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour”, IS 8807.

[13] ISO (1996), Proposed ITU-T Z.500 and Committee Draft on “Formal Methods in Conformance Testing”
(FMCT). ISO/EIC JTC1/SC21/WG7, ITU-T SG 10/Q.8, CD-13245-1, Geneva.

[14] Pavón, S., Larrabeiti, D., and Rabay, G. (1995)LOLA—User Manual, version 3.6. DIT, Universidad
Politécnica de Madrid, Spain, LOLA/N5/V10 (February).

[15] Probert, R.L. (1982) “Optimal Insertion of Software Probes in Well-Delimited Programs”,IEEE Transac-
tions on Software Engineering, Vol 8, No 1, January 1982, 34-42.

[16] Quemada, J., Azcorra, A., and Pavón, S. (1995), “The LOTOSPhere design methodology”. In: T. Bolog-
nesi, J.v.d. Lagemaat, and C. Vissers (eds.)LOTOSPhere: Software Development with LOTOS, Kluwer,
1995, 29-58.

[17] Richardson, D.J., O’Malley, O, and Tottle, C. (1989) “Approaches to Specification-Based Testing”. In:
R.A. Kemmerer (ed.),Software Engineering Notes, Vol. 14, No. 8, 86-96, December 1989.

